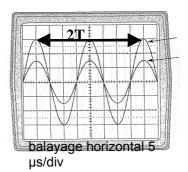
Exercice n°1: (Asie 2007)

Partie A

1.1. fréquence des ultrasons émis


Sur l'oscillogramme, on mesure 2T = $8.0 \times 5 \mu s$

 $T = 20 \mu s = 2.0 \times 10^{-5} s$

$$f = \frac{1}{T}$$
 avec f en Hz et T en s.

$$f = \frac{1}{2 \times 10^{-5}} = 0.5 \times 10^5 = 5 \times 10^4 \text{ Hz} = 5 \times 10^1 \text{ kHz}.$$

Remarque: f > 20 kHz, il s'agit bien d'ondes ultrasonores.

- 1.2. La longueur d'onde λ appelée aussi **période spatiale de l'onde**, est la distance parcourue par l'onde pendant une période T. $\lambda = v \cdot T$.
- 1.3. R_2 à la distance d de R_1 : les deux signaux reçus sont en phase.

R₂ en R'₂ à la distance d' de R₁ : les deux signaux reçus sont de nouveau en phase.

Le retard τ du signal reçu par R'₂ par rapport à celui reçu par R₂ est égal à T : $\tau = T$.

longueur d'onde : $\lambda = d' - d$

 $\lambda = 3.5 - 2.8 = 0.7$ cm = 7×10^{-3} m (1 seul chiffre significatif car la précision des mesures est de 0,1 cm).

1.4. Célérité des ultrasons dans l'air : $v = \frac{\lambda}{T} = \lambda$. f

 $v = 7 \times 10^{-3} \times 5 \times 10^{4} = 3.5 \times 10^{2} \text{ m.s}^{-1} = 4.10^{2} \text{ m.s}^{-1}$ (en respectant le nombre de chiffres significatifs)

1.5. On a $v = \lambda f$ avec $\lambda = d' - d$ donc v = (d' - d).f

Or f reste constante donc si la distance d'-d quadruple alors la célérité v doit quadrupler aussi.

Ainsi $v_{eau} = 4v_{air}$

 $v_{eau} = 4 \times 3,5 \times 10^{2} = 1,4 \times 10^{3} \text{ m.s}^{-1} = 1 \times 10^{3} \text{ m.s}^{-1}$

Partie B

- **2.1.** Une onde mécanique progressive est la propagation d'une perturbation dans un milieu matériel élastique sans transport de matière mais avec transport d'énergie.
- **2.2.** Il s'agit d'une onde longitudinale car la direction de la perturbation est de même direction que celle de propagation de l'onde.
- **2.3.** Dans les zones de dépression du liquide, suite au passage de l'onde acoustique, la pression est localement très inférieure à la pression moyenne régnant dans le liquide. Or "*la température d'ébullition d'un liquide diminue quand la pression diminue*" donc dans les zones de dépression, le liquide se vaporise localement créant ainsi des microbulles de vapeur.

Ces microbulles formées (= corps creux) implosent immédiatement lorsqu'une zone de surpression arrive, en effet la pression dans les microbulles de vapeur est nettement inférieure à la pression régnant dans les zones de surpression du liquide.

3. L'échogramme du cerveau.

3.1. La durée Δt du parcours de l'onde dans l'hémisphère gauche est la différence des instants correspondant aux pics P_1 et P_2 :

$$\Delta t = 160 - 10.0 = 150 \mu s.$$

Pour l'hémisphère droit on a de même, entre les pics P₂ et P₃ :

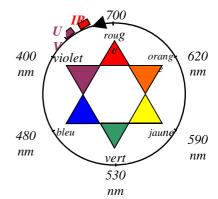
 $\Delta t = 310 - 160 = 150 \mu s.$

3 2

À la date $t_1 = 10,0 \,\mu s$, le 1^{er} écho (pic P_1) est perçu, l'onde a parcouru une distance égale à 2d.

À la date t_2 = 160 µs, le 2^{nd} écho (pic P_2) est perçu, l'onde a parcouru une distance égale à 2D = 2(d+ L).

Entre les dates t_1 et t_2 , donc pendant la durée $\Delta t = t_2 - t_1$, l'onde a parcouru la distance 2d+2L-2d=2L dans le cerveau à la célérité $v=1500 \text{ m.s}^{-1}$.


Alors
$$v = \frac{2L}{\Delta t}$$
 ou $L = \frac{v.\Delta t}{2}$ $L = 11,3$ cm

Exercice n°2: (Polynésie 2006)

1.1. L'absorbance est significative entre 510 nm et 560 nm

L'absorbance étant maximale entre 510 nm et 560 nm (couleur jaune – vert dans le schéma ci-contre) la couleur de la solution est la couleur complémentaire soit le violet. La solution de permanganate de potassium est de couleur violette.

On peut justifier autrement : La solution laisse passer le bleu et le rouge, elle absorbe le vert. La solution est de couleur magenta (appelée couramment violet).

1.2. Un laser de longueur d'onde 540 nm serait adapté pour cette étude car sa longueur d'onde est dans l'intervalle d'absorbance maximale.

2. Absorbance et cinétique chimique

2.1. $A_{\lambda}(t) = k$. $[MnO_{4^-(aq)}](t)$ donc l'absorbance $A_{\lambda}(t)$ diminue au cours du temps, car la réaction consomme des ions permanganate $[MnO_{4^-(aq)}](t)$ diminue. (couleur de la solution de plus en plus claire)

2.2.
$$n_1 = [\mathsf{MnO}_4^-] V_1$$
 quantité initiale en ions permanganate $n_1 = 5.0 \times 10^4 \times 1.0 \times 10^3 = 5.0 \times 10^7 \text{ mol}$

 $n_2 = [H_2C_2O_{4 \text{ (aq)}}].V_2$ quantité initiale en acide oxalique $n_2 = 12,5 \times 10^{-4} \times 1,0 \times 10^{-3} = 12,5 \times 10^{-7} \text{ mol}$

2.3. Équation chimique		$2 \text{ MnO}_{4 \text{ (aq)}}^{-} + 5 H_2 C_2 O_4 \text{ (aq)} + 6 H_3 O^+ \text{ (aq)} = 2 Mn^{2+} \text{ (aq)} + 10 CO_2 \text{ (aq)} + 14 H_2 O_\ell^{-\ell}$							
État du système chimique	Avancement	Quantités de matière (mol)							
État initial	x = 0 mol	n₁	n_2	Excès	0	o	beaucoup		
État intermédiaire	x (mol)	$n_1 - 2x$	n ₂ – 5 x	Excès	2 x	10x	beaucoup		
État final (si totale)	X _{max}	$n_1 - 2x$	n ₂ - 5 x	Excès	2 x	10 x	beaucoup		

$$n_1 - 2x_{max} = 0$$
, soit $x_{max} = \frac{n_1}{2}$ $x_{max} = 2.5 \times 10^{-7} \text{ mol}$
ou ou ou $n_2 - 5x_{max} = 0$, soit $x_{max} = \frac{n_2}{5}$ $x_{max} = 2.5 \times 10^{-7} \text{ mol.}$

Les réactifs ont été introduits dans les proportions stœchiométriques, $\mathbf{x}_{max} = \mathbf{2}, \mathbf{5} \times \mathbf{10}^{-7}$ mol. (Ce résultat est en accord avec la figure 3 de l'annexe.)

2.4.a) La vitesse volumique de la réaction :

$$v(t) = \frac{1}{V_{mel}} \times \frac{dx}{dt}$$
 où V_{mel} représente le volume du mélange réactionnel

- **2.4.b)** La vitesse volumique, à un instant t, correspond au coefficient directeur de la tangente à la courbe x = f(t) à la date t, divisé par le volume de la solution.
- **2.4.c)** On trace quelques tangentes à la courbe : le coefficient directeur diminue au cours du temps donc la vitesse diminue au cours du temps.

Remarque : L'allure de cette courbe peut surprendre, car en général la vitesse de réaction est élevée au début. Ici la réaction est catalysée par les ions Mn²+, or ceux ci apparaissent au fur et à mesure. Cette réaction est dite auto-catalysée.

- **2.5.** Le temps de demi réaction correspond à la durée au bout de laquelle l'avancement final de la réaction est égal à la moitié de sa valeur finale $x(t_{1/2}) = x_f / 2$
- **2.6.** Voir graphique : $t_{1/2} = 3.3$ min.

Exercice n°3: (Afrique 2008)

- 1. Équation de la réaction modélisant la transformation chimique entre le glucose et la solution de bleu de méthylène.
- 1.1. Un oxydant est une espèce chimique capable de capter un ou plusieurs électrons.

Un **réducteur** est une espèce chimique capable de **céder** un ou plusieurs électrons.

- **1.2.** Réduction $BM^+(aq) + H^+(aq) + 2e^- = BMH(aq)$
- **1.3.** Oxydation RCHO(aq) + $H_2O(\ell)$ = RCOOH(aq) + $2H^+(aq)$ + $2e^-$
- **1.4.** Au cours d'une réaction d'oxydoréduction, il y a autant d'électrons consommés que d'électrons produits, on additionne les deux demi-équations précédentes membre à membre, on simplifie pour les protons H⁺(aq), et il vient :

RCHO(aq) + BM⁺(aq) + H₂O(ℓ) = RCOOH(aq) + BMH(aq) + H⁺(aq) On retrouve l'équation 1.

2. Interprétation des observations

2.1. La réaction 1 est **lente**, l'oxydant BM⁺(aq) , responsable de la coloration bleue, se **consomme lentement** entrainant la décoloration de la solution.

La réaction 2 étant **rapide**, la forme réduite BMH(aq), incolore, est immédiatement oxydée en BM⁺(aq) qui colore à nouveau la solution.

2.2. Pour augmenter la vitesse de la réaction d'équation 1, on peut augmenter la **température** du mélange réactionnel ou augmenter la concentration initiale en BM⁺(aq). Remarque : le glucose étant en large excès devant les autres réactifs, l'augmentation de sa concentration initiale n'aurait que peu d'influence.

3. Étude quantitative

o. Etaac quanti									
3.1. Équation		2 BMH (aq) + O ₂ (aq) + 2H ⁺ (aq) = 2H ₂ O(ℓ) + 2 BM ⁺ (aq)							
État du système	Avancement	Quantités de matière							
État initial	0	n _i (BMH)	$n_i(O_2) = \frac{V(O_2)}{V_m}$	Excès	Excès	0			
État intermédiaire	x	n _i (BMH) – 2 x	$n_i(O_2) - x$	Excès	Excès	2 x			
État final	X _{max}	$n_i(BMH) - 2x_{max}$	$n_i(O_2) - x_{max}$	Excès	Excès	2x _{max}			

3.2.
$$n_i(O_2) = \frac{V(O_2)}{V_m}$$
 $n_i(O_2) = \frac{48 \times 10^{-3}}{24.0} = 2.0 \times 10^{-3} \text{ mol}$

3.3. La réaction est totale, si tout le dioxygène dissous réagit, alors $n_i(O_2)$ $-x_{max} = 0$, soit $x_{max} = n_i(O_2)$

 $n(BMH)_{finale} = n_i (BMH) - n(BMH)_{conso}$

Et d'après le tableau $n(BMH)_{finale} = n_i (BMH) - 2x_{max}$

Si tout BMH est consommé $n(BMH)_{finale} = 0$ alors n_i (BMH) = $n(BMH)_{conso} = 2x_{max}$

donc n_i (BMH) = 2. $n_i(O_2)$

 n_i (BMH) = 4.0×10⁻³ mol susceptible de réagir avec $n_i(O_2)$

3.4. RCHO(aq) + BM⁺(aq) + H₂O(
$$f$$
) = RCOOH(aq) + BMH(aq) + H⁺(aq) (équation 1)

La réaction d'équation (2) fournit au moins 4,0 mmol = $4,0\times10^{-3}$ mol de BM⁺(ag).

Tous les coefficients stœchiométriques de l'équation (1) sont de 1, donc n(BM⁺)_{conso} = n(RCHO)_{conso}.

Au moins $n(RCHO) = 4.0 \times 10^{-3}$ mol de glucose ont réagi au cours de l'expérience.

3.5.
$$n_{Restant}(RCHO) = n_i(RCHO) - n(RCHO)$$

$$\frac{M}{M} = \frac{M_i}{M} - n(RCHO)$$

 $m = m_i - n(RCHO).M$

 $m = 5.0 - 4.0 \times 10^{-3} \times 180 = 4.3 g$ de glucose n'ayant pas réagi.